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E. A. Krasil'shchikova [i, 2] solved the problem of the supersonic flow around a slight- 
ly cambered lifting surface of a finite span wing with subsonic edges under the condition of 
a supersonic section in the nose part of the leading edges. Starting from the condition that 
the velocity potential vanish on the part of the base plane outside the projection of the 
wing, the problem reduces to a two-dimensional Abel integral equation in the normal deriva- 
tive of the potential outside the projection of the wing on the base plane. The inversion 
of the Abel integral is known. The solution is also known for the problem of the flow around 
a flat triangular wing with completely subsonic leading edges (conical flow) [3]. 

The method of replacement of the wing nose by a flat triangular plate with subsonic 
leading edges (assumption of conical flow in the nose part of the wing) or replacement of 
a nose with subsonic edges by some nose with sonic edges, which reduces the solution of the 
problem to the Krasil'shchikova algorithm, is ordinarily utilized in computations of the 
total aerodynamic characteristics of nonplanar wings with completely subsonic leading edges. 

The problem of the flow around a nonplanar wing with completely subsonic leading edges 
was examined in [4] in the same formulation as in [I, 2] for a wing with partially supersonic 
leading edges (the potential in the base plane outside the wing projection is zero). The 
problem reduces to a two-dimensional Volterra-type integral equation in the velocity poten- 
tial whose solution is possible by successive approximations. The zeroth approximation is 
given arbitrarily from some assumptions. 

In this paper the solution of the problem of the flow around a slightly cambered wing 
with completely subsonic leading edges is based, exactly as in [i, 4], on the condition that 
the perturbation potential on the base plane outside the domain of wing projection equals 
zero. A u integral equation of the second kind is obtained for the parameter 
governing the flow, the normal derivative of the potential on the base plane along one of 
the wing sides. The possibility is shown of solving this equation by successive approxima- 
tions. The solution is a series whose terms are multiple integrals of known functions. The 
first term of the series (the zeroth approximation) reflects the main regularities of pertur- 
bation formation at the point under consideration. A comparison is presented between the 
governing parameter of the flow, evaluated in a zeroth approximation, and the known exact 
solution obtained by another method in the case of conical flow. The agreement is good in 
a broad range of leading edge deviations from the sonic. There is no practical necessity 
to perform the evaluation of the remaining terms of the series (multiple integrals). Find- 
ing the first term of the series consists of evaluating single and double integrals of known 
functions. 

The gas dynamics equations can be reduced to the wave equation for the perturbation 
velocity potential for supersonic flow (M > i) around bodies perturbing the free stream 
slightly 

(the direction of the x axis of the coordinate system coupled to the body agrees with the 

free stream velocity direction at infinity). The coordinate transformation x = xlV~--L-~--l, 
Y = Yx, Z = zl reduces (i) to 

~xxx1--~ylv1--~z, zl = 0. (2) 
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Fig. I 

The solution of the problem of the flow around a thin finite-span slightly-cambered 
wing when the conditions on the wing surface and on the vortical surface behind the wing are 
taken on the base plane y~ = O, is given by the formula [i] 

~ 'CC ' d~l d;1 q) (xl, Yl, zl) = -- ~ dJ q)nl (~1, ;I) , (3 )  
" �9 V ( ~  - .~i) ~ -  (=~ - ;i) ~ - y~ 

where T is the domain of integration on the base plane cut off by the characteristic cone 
with apex at the point (x l ,  Yz, z l )  and @qi'(~i, CI) is the normal derivative of the veloci ty 
potential on the base plane. The value of @ql'(~l, ~ )  is not known in the part of the do- 

main T outside the wing projection S on the base plane (Fig. i )  in the problem of the flow 
around a lifting surface. The potential equals zero of the base plane outside the wing pro- 
jection and the wake behind it [i] 

~ ( X l ,  0, Z1) = 0, (Xl, Z1) ~ 2 i, i = I ,  2 ( 4 )  

(Z i i s  t h e  domain  on t h e  b a s e  p l a n e  bounded by t h e  bow c h a r a c t e r i s t i c  OA i ,  t h e  s u b s o n i c  l e a d -  
i ng  edge OBi, the boundary of the vortical wake behind the wing BiDi). We shall later seek 
the solution in the part of the domain E i where the influence of the vortical wake is not 
felt (in the domain bounded by the lines OAi, OB i and the characteristic line BiEi). The 
wing can be nonsymmetric with respect to the plane z = O: z = f(x), x = f-(z) is the equa- 
tion of the leading edge OB I projection on the base plane, z = ~(x), x = V-(z) is the lead- 
ing edge OB 2. 

For the points Pi(x, z) e E i (i = i, 2) condition (4) with (3) taken into account has 
the following form in the characteristic coordinate system x = (x I - zl)/~, z = (x I + zl)/ 
s 

= O, (5a) 

z z ~-(D z I-(D 

o I - ( ~ ; )  o o 

=0, (5b) 

where 8i(~, ~) = ~q'($, ~) is a quantity unknown in the domain Zi, and ~($, ~) = @n'(~, ~) 
is a function given by the lifting surface geometry in the domain S. The domain of the de- 
pendence T = oii + sl + o12 is shown in Fig. i for the point P1(x, z) e Z I. The domains o11, 
s~, o~2 correspond to the domain of integration of the first, second, and third terms of the 
relationship (Sa): the domain o11 is bounded by the lines RIO , OCz, CIPI, PIRI, the domain 
s I by RIR 2, R20, ORI, and the domain o12 by RzC2, C20, OR 2. Let us rewrite the relationships 
(5a) and (5b) in the form 

A~(oo + F~(~) + S~2(O~) = O, ( 6 a )  

261 



Here Ai(@i), Fi(~), Bij(@ j) are the first, second, and third terms of (5a) and (5b). 

The initial operator Ai(8 i) is a two-dimensional Abel operator in the quadrangular do- 
main oii bounded by projections of the leading edges, the bow characteristic, and the char- 
acteristic lines of the cone of the dependence of the point Pie Z i. The inversion formula 
for such an operator. Ai-~Ai(Si ) = 8i, is presented in [5, pp. 174, 175]. Applying the oper- 
ator A~ -~ to (6a), we obtain 

r ](x) ~(x) ] 

Ol(X'Z)+ ~],/z----z~t [.r z,~ --~d~+,of O'(x'~)V'f(x)--~ d~ = O ' z - - ~  .J (7)  

The value of 81(x, z) for the point (x, z) e E I is determined in terms of @q'(x, ~) on the 
characteristic ~ = x. On the section of this characteristic passing through the projection 
of the wing, on the line R2R~(@(x) E r ~ f(x)), the value ~q'(x, ~) = ~(x, ~) is given by 
the wing geometry. On the section of the characteristic C2R 2 (0 5 ~ 5 $(x)) in the domain 
o~2 the value @D'(x, ~) = 82(x, ~) is an unknown. 

If the operator A2 -i is applied to (6b), then we have for the point (~, ~) e Z 2 

o~ (~, 0 + (z (~', ~) V r  (~) - ~' d~' I-(~) _ ~' _~, + ~_~, d~' =0, 

i - -  - /  D o 

( 8 )  

from which O=(x, ~) can be found on the characteristic ~ = x: 

O, (x, ~) = --I 
]/~: _ , -  (~) 

i-(D 
~b--i~) _~, S 01(~', :) V*-- (:) ~' = (~', ~) V *-  (0 z - - g '  d ~ ' +  z - - ~ '  d ~  . 

--Y-(S) o 
( 9 )  

Substituting 82(x, ~) from (9) into (7), we obtain a two-dimensional Volterra-type in- 
tegral equation of the second kind in the function 81(x, z): 

O~ (z, z) =. 1 _ (z (x, ~) ] / ' / -~  - -  ~ d ~  + 

~ ' V ~  t ,(,) ~ - ~  

~(~) ~-(D 

+ 
(~ - ~) (~ - ~) V ~  - r  (~) 

o t - ( ~ )  

#(~) Y-(I) ] 

0 0 

(lO) 

The value of O1(x, z) at the point P1(x, z) e Z I is determined in terms of known values of 
=(~, ~) on the characteristic RzR2(~(x) ~ ~ 5 f(x)) and on the nose part of the domain of 
dependence on the wing s I (the domain bounded by the lines R20, ONI, NIR2) and in terms of 
the unknown value 01($, ~) in the nose part of the domain Z I (the domain bounded by the lines 
NIO, OQI, QINI) (see Fig. i). A relationship analogous to (70) can be written down for Q2(x, 
z) at the point P2(x, z) e Z 2. 

The normal component of the velocity 81(x, z) in the domain Z I has a singularity of the 
type r -I/2 approaching the leading edge (z + f(x)). We write (i0) as 

�9 ~ = v1~ + 4 . .  ~(x, =) = %(x, ~)VFi-7(x). (ii) 
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Fig. 3 

The function 

](x) ~(x) tb-(;) 

~b(x) o S-(~) 

a (E, I) ] / I f  (x) - -  ~1 [ 9 -  (~) - -  ~1 d~ d~ 

(x -~) (=- ~) ]/. - 9- C) 

is expressed in terms of values ~D' = ~ known on the wing surface and belongs to the class 
of continuous functions for smooth wings. 

Let us estimate the norm of the operator 

Nx) I-(~) 

0 0 

"q (i, ~) l / l / (x)  - ~1 [,b- (;) - ~s] 
dc de, 

(~ -  i) (~-  ~) V b  - ~;,- (~)17- [~s- f (#1 

in which integration is performed over the curvilinear triangle NiOR i in the nose part of 
the domain 2z 

I l h l l  = g (x, ~) I d;, 

#-(1) ] - (D  

H ( z ,  ~) = E (= - -  ~;) V ~  - i (~) 
0 0 

d~ 

Let us note that a sign-constant positive function is under the integral of the operator 
I i (including the operator H). The sign-positivity of the integrands and their integrals is 
not spoiled during changes in the limits of integration made for carrying out the estimates. 

The cases of concave (Fig. 2) and convex (Fig. 3) leading edges should be distinguished 
when performing the estimates. A fragment of the nose part of the wing is given in Figs. 2 
and 3 (see Fig. i). For concave wings we draw the tangent to the leading edge OB: at the 
wing apex (the line OH i) whose equation is ~ = ki2~ (1 ~ ki2 ~ ~). For convex wings we con- 
nect the wing apex with the point of intersection N: of the characteristic R2Q: with the 
leading edge by a straight line [the equation of the line ONi is r = k:3$ (i 5 k:3 5 ~)]. 
In both cases ~ = f(~) < kag in the interval under consideration 0 5 ~ ~ ~(x) (the coordi- 
nates of the point R2[x, ~(x)]). Taking this into account 

0 

~=/h, 

. /-~-k~ ~ I/ ~-(~) t 2 arctan 

0 

263 



TABLE 1 

tg______~ h~5,67i  X=55 h=2,]45, ~(=70 h=i,42~ X=80 

tg x 0~o O~ 

1,05 
1,1 
1,2 
4/3 ~ 

2 
8 / 3  " 

3 
4 
6 

i2 

01o 01 

L923805 i,924042 
�9 L~65466 i,i65626 
0,663620 0,663723 
0,416764 0,416836 
0A29256 0,i29283 
0,069286 0,069302 
0,05487i 0,054884 
0,032i04 0,032~i2 
0,0~5894 0,0i5898 
0,005i52 0,005i53 

01, 01 

i,54~694 i,552448 
0,909604 0,9i6793 
0,500043 0,504623 
0,3044i2 0,307549 
0,0878311 0,088978 
0,0457t3 0,046363 
0,035872 0,036393 
0,020624 0,020939 
0,0i0043 0,0i0203 
0,003205 0,003258 

0,970t79 
0,5358t2 
0,270223 
0,i52776 
0,037555 
0,0i8403 
0,0i4i82 
0,007883 
0,003722 
O,OOit~ 

i,015902 
0,565723 
0,288625 
0,i64930 
0,04i602 
0,020607 
0,0i5935 
0,0089i4 
0,004235 
0,00i32i 

Therefore 

r ~(x) 

I1:1 I1 < 7 <. - r V x - :  , -  (2) ~ ~ - ,  ( = -  ~) V .  - , -  (2) 
0 

The cases of concave (Fig. 2) and convex (Fig. 3) wings should again be differentiated in 
further execution of the estimates. For concave edges we draw a line R2F 2 from the point 
R2[x, ~(x)], whose equation is $ = g22(r = x - [~(x) - ~]/k22, R2F2110H 2 (k22 is the tangent 
of the slope of the tangent to the leading edge OB 2 at the wing apex). For convex wings, we 
draw the line R2F 2 from the point R2[x, ~(x)], whose equation is $ = g23(~) = x - [~(x) - ~]/ 
k23 [k23 is the tangent of the slope of the tangent to the leading edge OB 2 at the point R 2 
(0 ~ k22, k23 5 i)]. In both cases $ = ~-(~) ~ g2(~) in the interval under consideration 
0 ~ ~ 5 ~(x) and therefore 

~(x) 
Vg, (~5 

0 

_ _  d~. 

Taking into account that g2(~) ! x, x - g2(~) = [~(x) - r 2, we write 

r d2 Vk,-~ 2 ] /" JlI1{l~ ~--~ S (z--2,~/'--~,x,-- 2 z]/7-Z--'(xJ arctg V,(xj__g "x) ~/ k=x 
0 0 

In the domain E l f(x) 5 z i ~, and we finally have the estimate 

II h II < I/: 
k~x ( 12 ) 

/ (x) - ~ (x), I' 

�9 where 0 5 k 2 5 1 is the maximal value of the tangent of the slope of the leading edge OB 2 in 
the section 0 ~ $ 5 x (Pl(x, z) �9 Z I) for both the concave and convex edge OB 2 cases. 

The necessary condition for convergence of the solution of (ii) by successive approxi- 
mations is the requirement JJIlJ j 5 i. If lJIlJJ < i, then the series 

will be the unique solution of (ii) [6, pp. 126 and 127]. 

Let us examine the limits of applicability of the successive approximation for the upper 
bounds found for wings whose leading edge projections on the bose plane are straight lines 
(z = kix is the equation of the line OBi). According to (12) the necessary condition for 
convergence in this case has the form 
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Fig. 4 

k2 ll~lll~< k~--k~ < 1 .  (14) 

For a wing symmetric relative to the z = 0 plane (k 2 = i/k I = l/k, k ~ i), it follows from 

(14) that k > ~-. This corresponds to sweepback angles of 45 ~ 5 X ~ 8 I~ (X = 45 ~ is the 
sonic edge). For a wing whose leading edge OB I is directed along the stream (k I = i, Xl = 
90~ k 2 > 1/2 which corresponds to sweepback angles of 45 ~ ! X2 5 72~ Analogously for a 
wing whose leading edge OB 2 is directed along the stream (k 2 = i, X2 = 90~ kl > 2 (sweep- 
back angles of 45 ~ ! Xi 5 72~ �9 In all three examples the angle at the triangle apex is 
z18 ~ Let us recall that k i are tangents of the slope of the leading edges determined in 
the characteristic coordinate system Oxz (k = 0 is the Ox axis and k = ~ is the Oz axis), 
while the sweepback angles are, as usual, measured from the direction of the 0z I axis of the 
initial Oxlz I coordinate system (see Fig. i). 

The zeroth approximation of the solution of (ii) is the first term TI0(X , Z) = GI~ of 
the series (13). According to (ii), the zeroth approximation of the derivative of the veloc- 
ity potential on the base plane outside the wing is 

GI~ (x, z) ~ 21. (15) 010(x,z) V ~ '  

The 610 a r e  e v a l u a t e d  a c c o r d i n g  t o  (15)  in  t h e  c a s e  o f  t h e  f low a round  t h e  p l a n e  t r i -  
a n g u l a r  plates, symmetric with respect to the z = 0 plane, with different sweepback angles. 
Results of the computations of 610 on rays ~ passing through the point (x, z) e Z I are pre- 
sented in the table for three plates, k = 5.671, X = 55~ k = 2.145, • = 70~ and k = 1.428, 
X = 80~ The ray angle g (right side of Fig. 4) is given in terms of the value of the tan- 
gent of the leading edge slope tanp = ak(a = 1.05, i.i ..... 6, 12). The ray tanp = k 
corresponds to the leading edge OB I (k = tan ~), the ray tan p = ~ to the bow characteristic 
OA I. A graph of 810 = @10(P) is given in the left side of Fig. 4 for the plate k = 5.671, 
X = 55 ~ (P = 80 ~ corresponds to the leading edge OB l and D = 90 ~ to the bow characteristic 
OAi). 

Also presented in Table i are values of 6 i on these same rays according to the exact 
solution [7, p. 129]. The values of 810 and 01 have the r -I/~ singularity on the leading 
edge OBI, and 6~0 = 81 = 0 on the characteristic OAi. On the ray nearest to the leading 
edge (tan P = 1.05k), the deviation of the values of 8~0 from the exact solution is less than 
0.01% for the plate k = 5.671, X = 55 ~ , less than i% for k = 2.!45, X = 70~ and less than 
5% for k = 1.428, • = 80 ~ . 

As should have been expected, the deviation of the zeroth approximation from the exact 
solution increases as the degree of leading edge standoff from the sonic increases. But 
even in the case of the narrowest wing used in aircraft construction practice X = 80~ a 5% 
error for the number M = v~ in the determination of the downwash behind a wing during compu- 
tation of the total aerodynamic characteristics will be less significant. As the Mach num- 
ber increases (M > v~-) the degree of leading edge standoff from the sonic of a specific wing 
diminishes with a given value of the sweepback angle X, and computation of the wing aerody- 
namic characteristics by the zeroth approximation becomes more reliable. 
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SELF MOTION OF A BODY IN A FLUID 

V. L. Sennitskii UDC 532.516 

I. Many bodies (ships, living creatures) are capable of self-motion in a fluid, i.e., 
they move themselves by pushing fluid away from them. 

The well-known (see [i], for example) equations of motion of a rigid body with respect 
to an inertial reference frame are 

dP b dL b 
d--F = F; -~- = N, 

where t is the time, Pb is the momentum of the body, F is the total external force acting on 
the body, Lb is the angular momentum of the body about the point O (the origin of the coordi- 
nate system), N is the total external torque acting on the body about point O. Therefore in 
the case when the body translates by pushing away the surrounding fluid we must have 

dPb__ ( 1 . 1 )  
d-F - -  S f  ->b 

dL b 
d--7- = Tf.+ b ( i. 2 ) 

where S f~. b is the momentum transferred by the fluid to the body per unit time and T:f~ b is 
the angular momentum transferred by the fluid to the body per unit time about point O. Equa- 
tions (i.i) and (1.2) are the basic equations describing self-motion of a body in a fluid. 

In the presence of body forces, the total force acting on the body must be added to the 
right hand side of (i.i) and the total moment of the forces (torque) about point O must be 
added to the right hand side of (1.2). 

Self-motion of a body in a fluid is possible because of the interaction between the 
boundary of the body and the fluid (but not as the result of any disturbances in the fluid 
which could also occur in the absence of the body). Hence the boundary of the self-moving 
body serves as its driver, In self-motion the operation of the driver is such that condi- 
tions exist on the boundary of the body for which the equations of self-motion are satisfied. 

2. An approximate solution of the problem was found in [2, 3] for steady flow of a vis- 
cous incompressible fluid past a self-moving body (a circular cylinder and a sphere). In the 
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